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Abstract. Different particulate matter (PM) mass concentration measurements and their long-
term trends were compared at the Station for Measuring Ecosystem-Atmosphere Relations
(SMEAR 11, Hyytiéla, Finland). We compare three independent methods: 1) gravimetric
method with a cascade impactor, 2) Synchronized Hybrid Ambient Real-time Particulate
Monitor (SHARP), and 3) calculated PM concentration from combined Differential Mobility
Particle Sizer (DMPS) and Aerosol Particle Sizer (APS) particle number size distribution data.
In all size classes (PM1, PM2s and PMy), the different methods show a good correlation
(Pearson’s correlation coefficient approximately 0.8). The mass concentrations in all PM
classes were the highest in summer and the lowest in autumn and winter. While all seasons and
size classes showed declining trends for PM concentrations (from -0.012 to -0.064 pg m3y?)
between 2005 and 2020, the decline was smallest in summer, which follows the trends observed
also in SOz and NOx concentrations. These results underline both the summertime dominance
of biogenic sources for the aerosol mass concentration in the rural boreal forest environment
and the reduction of anthropogenic pollution due to the EU level restrictions for improved air

quality.
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1 Introduction

Particulate matter (PM) concentrations are monitored worldwide, because they are connected
to health effects, such as asthma and cardiovascular diseases, and premature deaths (Pope et
al., 2003; Shiraiwa et al., 2017; WHO, 2021). The increased knowledge regarding the
relationship between air pollution and mortality have resulted in air pollution regulations,
which additionally aim to decrease inequality related to air pollution exposure (Wang et al.,
2017; WHO, 2021). Besides the adverse health effects, aerosol particles can also scatter or
absorb radiation and participate in cloud formation and processing, thus affecting the Earth’s
climate (IPCC, 2021). While the overall effect of aerosol particles on climate is considered to
be cooling, large uncertainty is related to aerosol particles and especially aerosol-cloud-
radiation interactions (IPCC, 2021).

The PM measurements are divided into size classes based on the aerodynamic diameter of the
particles: PM1, PMz2;s, and PM1o with upper maximum diameters of particles 1 pm, 2.5 um, and
10 pm, respectively. The PM mass concentrations in the size fractions are the total mass of
particles below these limiting sizes. The size of atmospheric aerosol particles is perhaps their
most critical parameter, both in terms of their climate (e.g., Pdschl, 2005; Dusek et al., 2006)
and health effects (Schraufnagel, 2020). In principle, the smaller the particles are, the deeper
they can penetrate in the human respiratory system and can thus end up also in other organs
beside the lungs (Pope et al., 2003; Maynard & Kuempel, 2005). To address this, the new air
quality directive of the European Union (2024/2881) includes total concentration and size
distribution measurements of ultrafine particles (defined as particles between 10 to 100 nm in
diameter) as well as black carbon (BC) as mandatory measurement parameters at air quality
supersites, as suggested e.g. by Kuula et al. (2021). The smallest particles have only a minor
contribution to the aerosol mass concentration, but they dominate the particle number
concentration. In the climate perspective, the most relevant particles have a diameter larger
than about 50-100 nm, since they can act as cloud condensation nuclei and scatter or absorb
radiation (IPCC, 2021).

The sources of aerosol particles are variant, including both local and long-range transported
emissions, since the lifetime of particles is about one week (Seinfeld and Pandis, 2006; Manavi
etal., 2025). Primary aerosol particles consist mostly of particles from traffic and industry (e.g.,

BC), or from natural sources (e.g., volcanic ash, sea-spray, dust, and pollen), and they
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contribute to all PM classes. Secondary aerosol particles are formed in the atmosphere from
gas-phase precursor vapors (e.g. Kulmala et al., 2013), including, for example, different
oxidized organic compounds, sulfuric acid, ammonia, and amines (e.g. Olenius et al., 2018).
These eventually grow to larges size ranges contributing significantly to the accumulation
mode and thereby to PM.

Organic aerosol (OA) is a major PM1 component at SMEAR 11 (Heikkinen et al., 2020) and
globally (e.g. Jimenez et al., 2009). Biogenic or anthropogenic emissions of volatile organic
compounds (VOCs) are major OA sources. They undergo oxidation in the atmosphere yielding
oxygenated products with lower volatilities than the parent VOC. These oxidation products can
grow pre-existing particles e.g., via condensation (e.g. Riipinen et al., 2012), thereby increasing
the PM loadings. In the boreal coniferous forest, the VOCs consist largely of monoterpenes,
emitted by the surrounding vegetation (Rinne et al., 2005). The emission rates of monoterpenes
from the forest are boosted by warm temperatures (Guenther et al., 1993). The same is observed
in the OA mass concentrations (Heikkinen et al., 2021; Yli-Juuti et al., 2021). On average, OA

is the most abundant aerosol chemical species at SMEAR |1 (Heikkinen et al., 2020).

Sulfate, another key PM1 component at SMEAR Il and globally, is formed, e.g., upon oxidation
from sulfur dioxide (SO.), mostly emitted by industry (Seinfeld and Pandis, 2006). This may
take place either in the gas phase (e.g. SO2 oxidation by OH) or in the atmospheric aqueous
phase, such as in cloud water (e.g. Seinfeld and Pandis, 2006). Sulfate aerosol formation,

resulting from cloud processing, has been observed at SMEAR 11 (Isok&énta et al., 2022).

Nitrate aerosol mass concentrations, mostly prevalent in agricultural or urban environments
are therefore less abundant at SMEAR 11 (Makkonen et al., 2014). The concentration depends
on, e.g., the availability of nitric acid (HNO3), which is an oxidation product of nitrous oxides
(NOy), and gas phase ammonia (NHz) as well as properties of pre-existing particles (pH and

liquid water content) and air temperature (Nenes et al., 2020).

The first EU level legislations concerning air quality entered into force in 2005. Nowadays, the
legislation covers basic air pollutants: PM (PM1o and PMzs), trace gases (SOz, NOz, Oz, CO,
benzene, and polyaromatic hydrocarbons) as well as heavy metals (Pb, As, Ni, and Cd).
Legislation on PM concerned originally only PM1o concentration: the daily 24 h average was

targeted to <50 pg m, but could be exceeded 35 times per year, and yearly averaged PMio

3
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value was limited to 40 ug m. In 2010, yearly average PM2.s was first targeted to 25 pg m
and in 2015, it became a limiting value. In 2020, the limit value was tightened to 20 ug m.
Legislation concerning SO, a precursor for sulfuric acid, is from 2005: hourly averaged SO>
value was limited to 350 ug m=and 24 h average to 125 pug m3. NO2, which is formed in
combustion processes, was also regulated: the limit hourly average value was set to 200 pug m-
% and yearly average to 40 pg m™ in 2010. The EU level directives can be found in
https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en (Accessed:
25 Apr 2025).

The Ambient Air Quality Directive was revised in the end of 2024, forcing further reductions
for targets values of many pollutants, including PMio, PM2s, Oz, SO2, CO, and benzene.
Additionally, the new air quality directive introduces advanced measurement parameters, such
as aerosol number concentration, aerosol size distribution, BC, and oxidative potential. Air
quality supersite concept is implemented as well (Kuula et al., 2021). In order to compare the
health impacts of the ultrafine particles and PM2, the observations are concentrated in urban
and rural supersites. The number of the required sites depend on the population and land area
of the EU member state. In addition, the EU Commission mandates measurements of ultrafine

and BC concentrations in the vicinity of air pollution hotspots.

Techniques for measuring aerosol mass concentrations have improved remarkably during the
last decades (VVan Dingenen et al., 2004; Occhipinti & Oluwasanya, 2017; Shukla & Aggarwal,
2022). Most of the PM measurements have traditionally been done by an offline gravimetric
analyses where particle size classes are separated, e.g., by impactor (Laakso et al., 2003) or
special high-volume samplers (Barmpadimos et al., 2011). The offline methods are quite
laborious as their sampling time is up to few days and weighing is done manually. Thus, PM
concentrations are nowadays more commonly measured with on-line techniques, such as
tapered element oscillating microbalance (TEOM) with the Continuous Ambient Particulate
Monitor (Laakso et al., 2008) and Synchronized Hybrid Ambient Real-time Particulate monitor
(SHARP) (Chen et al., 2018). Besides the direct mass measurements, the particle mass can be
calculated from the particle number size distribution with assumptions regarding particles’

shape and density (NeusiR et al., 2000).

The aim of this work is threefold. First, we compare the PM concentrations obtained from

gravimetric impactor, on-line mass analyzer SHARP and from the particle number size

4
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distribution to explore their applicability for continuous PM measurements. Second, we report
for the first time long-term (2005-2020) measurements of PM1o, PM2sand PM;: at SMEAR 11,
Finland, and explore the overall concentration levels as well as selected specific episodes.
Third, we estimate the trends of the PM concentrations separately for each season and the
impact of the EU legislation on the PM trends. Quality controlled data on aerosol particle mass
concentration in a boreal background station enable us to explore the role of local, regional and
global phenomena controlling the aerosol mass concentration in the region. This work
continues the analysis presented in Keskinen et al. (2020) with updated datasets and revised

analysis methods.

2 Methods
2.1 Measurement station

The measurements were performed at SMEAR |1 located in Hyytial4 in southern Finland
(61°51°N, 24°17’E; 181 m a.s.l; Fig. 1a). Hyytidld is a rural background measurement site
with low local anthropogenic emissions (Hari and Kulmala, 2005). A photo of the
homogeneous 60-year-old Scots pine stand surrounding SMEAR Il is presented in Fig. 1c. The
nearest cities are Tampere (50 km southwest; 249 000 inhabitants) and Jyvaskylad (90 km
northeast; 146 000 inhabitants).

The station is equipped with instruments for continuous and comprehensive measurements of
interactions between the forest ecosystem and atmosphere (Hari and Kulmala et al., 2005).
SMEAR |1 is part of the European Aerosols, Clouds, and Trace gases Research Infrastructure
(ACTRIS; Laj et al. 2024; https://www.actris.eu/, accessed 08 Nov 2024). The presented
measurements are conducted inside the canopy with total suspended particulates (TSP) or PM1o
design inlets for the different aerosol measurements on the roof of the aerosol hut (Fig. 1b).
Winter at SMEAR |1 is defined to be from December to February (DJF), spring is from March
to May (MAM), summer from June to August (JJA) and autumn from September to November
(SON). Note that winter has January and February data from the following year. Due to the
data availability, measurements start from spring 2005 and in the end of the measurement

period winter includes only December 2020.
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Figure 1: (a) The location of SMEAR Il (© OpenStreetMap contributors 2020. Distributed

under a Creative Commons BY-SA License), (b) hut for aerosol instrumentation, and (c) a
photo of the surrounding region around SMEAR II.

2.2 Weighing-based mass measurements with cascade impactor

PM measurements with gravimetric cascade impactor started in late 1990s at SMEAR II. The
impactor has an unheated TSP inlet with stainless-steel tube, placed at 5 m height above the
ground. The cascade impactor has three stages with impactor cut points at 10 pm (PMuo), 2.5
pm (PM2s) and 1 um (PM3) (Dekati PM10 impactor) (Berner and Luerzer, 1980). The sample
air flow rate during collection is 30 Ipm. Collection substrates are 25 mm polycarbonate
membranes (Nuclepore 800 203) without holes. At the last stage there is a 47 mm Teflon filter
with 2 um pore size (R2P J047) from Pall Corporation. To prevent the bouncing back of the
particles from the collection substrates, the membranes are greased with Apiezon L vacuum
grease diluted in toluene. The collected impactor samples are weighted every two or three days

to get the mass distribution. The samples are stored in a freezer for occasional further analyses.
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2.3 On-line mass measurements with SHARP

The Synchronized Hybrid Ambient Real-time Particulate Monitor (SHARP, Thermo
Scientific, Model 5030) is a real-time particulate monitor measuring at 1 s time resolution
(Goohs et al., 2009). SHARP combines light scattering photometry and B—ray attenuation for
continuous PM1o measurement. In SHARP the light scattering signal (nephelometer) is
automatically calibrated against the beta attenuation mass sensor. The sample line inlet is
placed on the roof of the cottage at 6 m height above the ground level and its flow rate is 16.7
Ipm. The sample line is heated to reduce the humidity of the sample air. The temperature was
fixed to 45 °C until August 2016 and to 35 °C after that. Sampling with SHARP at SMEAR II
started in 2012.

2.4 Aerosol mass derived from the particle size distribution

The aerosol mass concentration for different size classes PM1o, PM2s and PM: can also be
estimated by combining the number size distributions measured with Differential Mobility
Particle Sizer (DMPS) and Aerodynamic Particle Sizer (APS) and calculating the mass by
assuming that the particles are spherical and have a constant density. The instrument set-ups
for DMPS and APS are described in detail by Aalto et al. (2001). Briefly, the twin-DMPS
consists of a long and a short Vienna type Differential Mobility Analyzers (DMA) and two
condensation particle counters (CPC, TSI 3025 and TSI 3775). The DMPS inlet is placed on
the roof of the hut at 8 m height and APS inlet at 5 m above ground level. The DMPS and APS

systems provide aerosol number size distribution with a 10 min time resolution.

At SMEAR I, the DMPS measures the aerosol number size distribution in the electrical
mobility equivalent diameter range of 3-1000 nm (Aalto et al., 2001). The APS (TSI 3320)
measures the aerodynamic particle size distribution of particles with aerodynamic diameter
within the range of 0.5-20 um (Peters et al., 2006). To have comparable particle size
distributions, we utilized the following conversion equation between the aerodynamic diameter

(da) and the electrical mobility equivalent diameter (dm):
podi = ppdin, 1)
where py is the density of the particle and po is the unit density of the particle (1 g cm™). The

density of the particles is assumed to be 1.5 g cm (Saarikoski et al., 2005). The mass of the

particles measured with DMPS is calculated as:
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217
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221

222 The mass concentrations (PM1, PM2s and PM1o) were then calculated by integrating over the
223  corresponding size range:

224

i um

225 PMi= f0.6 wm NDMPS : mDMpsddm + f

0 um 0.6 um NAPS *mppsddy 4)
226

227 In practice, we utilized DMPS data from 0.003 to 0.6 um and APS size distribution from 0.6
228 pm to 1 pm, 2.5 pm or 10 um, depending on the mass fraction in question. Typical size
229 distributions for different seasons are presented in Fig. 2.
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232 Figure 2: Seasonal median number size distributions for 2005-2020 at SMEAR Il measured
233  with a combination of DMPS and APS with a constant density assumption. The dash-dotted
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line indicates the crossover size between the instrument data to determine integrated mass

concentrations.

2.5 Ancillary data

SOz and NOx were measured at 16.8 m height above ground level at SMEAR Il with gas
analyzers by Thermo Fisher Scientific Inc., USA. SO2 was measured with pulsed fluorescence
technique, using model TEI 43CTL until September 2010 and model TEI 43i-TLE after that.
NOx concentration was measured with TEI 42CTL (molybdenum converter) until February
2007, then with TEI 42CTL (photolytic converter) until April 2011, and after that with TEI
42iTL (photolytic converter). Air mass origins were calculated using Hybrid Single-Particle
Lagrangian Integrated Trajectory model (HYSPLIT) and divided to three sectors as described
in Raty et al. (2023).

2.6 Correlations, bivariate fitting and long-term trend estimation

The Pearson’s correlation coefficients between the mass concentrations from different
instruments were calculated in Matlab, along with bivariate fitting (Cantrell, 2008). Before the
analysis, we removed clear outliers that were further than 6 scaled median absolute deviations
(MAD) away from the median using the Matlab built-in function isoutlier. The procedure was
done for the whole dataset at once, i.e. without regarding for instance seasonal dynamics, but
separately for each instrument and PM size. About 1.5 % of the data were removed. When
comparing DMPS+APS and SHARP with the impactor data, we calculated 2-3 days’
cumulative aerosol mass concentration to make DMPS+APS and SHARP measurements

comparable to the impactor data time resolution.

The statistical significance of long-term trends in linear scale were calculated using the
mannkendall function for Matlab (v1.1.0, 10.5281/zenodo.4495589). We applied the seasonal
3PW method, which utilizes three pre-whitening methods for the trend estimation (Hirsch et
al., 1982). Pre-whitening methods by Kulkarni and von Stroch (1995) and Yue et al. (2002)
remove lag-1 autocorrelation and autocorrelation on detrended data, enabling to determine the
statistical significance of Mann-Kendall test reliably; of these the one with higher value is
reported. Variance-corrected trend-free pre-whitening method by Wang et al. (2015) is used
for calculation of Sen’s slope, which leads to more accurate trend analysis (Collaud Coen et

al., 2020).
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3 Results and discussion
3.1 Comparison between the mass measurement methods

Here, we present the comparison between the different aerosol mass measurement techniques
to validate our PM concentration data (Fig. 3 and S1). We found that the data from the different
mass measurement techniques correlate well, with the correlation coefficients R>0.8 for all the
measurements except between SHARP and impactor for which R=0.74 (Table 1). Thereby, the
correlation was lower between the two direct mass measurements, SHARP and impactor, than
between DMPS+APS derived and impactor or SHARP measurements, even though with the
DMPS+APS method we had to assume constant density and spherical shape of the particles in
the mass concentration calculations. In reality, the particle composition, density, and shape
vary between different particles (Kannosto et al., 2008; Heikkinen et al., 2020), which could

lead to the higher uncertainty in the indirect DMPS+APS mass calculations.

Table 1: Correlation coefficients between different PM measurement techniques. Correlation
coefficient between SHARP and DMPS+APS in PMyo is 0.84. In all cases P-value << 0.05.

Method Impactor, PM1o Impactor, PM2s Impactor, PM1
DMPS+APS 0.84 0.86 0.88
SHARP 0.74 - -

10
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Figure 3: Correlation between the different mass measuring methods against impactor
measurements a) PM1o from SHARP, b) PM1o from DMPS+APS, ¢) PM2s from DMPS+APS,
and d) PM; from DMPS+APS. Bivariate fit to the data is represented with a red line and 1:1

line is black. The data are averaged based on the impactor time resolution (2—3 days).

Comparing Fig. 3 and Fig. S1, it seems that the data points between SHARP and DMPS+APS
are positioned more distinctly on the 1:1 line whereas the impactor data are scattered more
towards higher concentrations in all size classes. After the inlet heating temperature reduction
in SHARP from 45 to 35 °C, the PM1o values measured by SHARP were more comparable to
those measured by impactor, except for the lowest and highest PM1o concentrations (Fig. S2).
This indicates that the higher inlet heating temperature might have led to losses of semi-volatile

compounds from the sample air of SHARP.

The measurement methods used in this study differ considerably from each other, and hence

they are subject to different kinds of issues in PM monitoring. The impactor data, for example,

11



Preprint. Discussion started: 2 June 2025
(© Author(s) 2025. CC BY 4.0 License.

https://doi.org/10.5194/ar-2025-16 °. A
‘% R

300 s sensitive to any disturbances related to the weighing of the filters or evaporation of semi-
301 volatile material from the filters during the long sampling time. Impactor is, however, the only
302 purely weighing-based mass measurement at SMEAR I1. Thus, in the next section, we compare
303 all the other methods against the impactor data.
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305 3.2 Seasonal variation and emission events

306 We explore the time series of PM concentrations to observe both the long-term trends and the
307 differences between the seasons (Fig. 4 and S3). Mean values from 1991-2002 reported by
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309 values from SMEAR II. To enable the comparison with the values by Laakso et al. (2003), we
310 divided our measurement period into shorter, approximately five-year periods (2005-2010,
311 2011-2015 and 2016-2020). The mean PM concentrations as well as median values are listed
312 inTable 2.
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Figure 4: Seasonal median (a) PMuo, (b) PM2s and (c) PM1 concentrations measured with the

impactor as well as (d) temperature and their 25 and 75 quartile ranges at SMEAR 11. The tick

mark is between summer and autumn of a year. Mean values for 1991-2002 are from Laakso

et al. (2003).

Table 2: Average (mean / median) PM concentrations measured at SMEAR I1. Values (mean)

for 1999-2001 are from Laakso et al. (2003) and other values from this work. First number in

each cell is the mean for the indicated period and following numbers are seasonal means. Unit

is pg m3,
1999-2001 2005-2010 2011-2015 20162020 2005-2020

PMag, impactor 6.9 54/44 58/4.8 4.413.4 45/4.2
-Spring 7.4 5.9/4.7 5.3/4.2 44/3.3 42741
-Summer 7.2 6.4/5.6 74/6.4 5.8/5.5 55/5.6
-Autumn 6.9 45/34 54/4.4 41/3.0 43/35
-Winter 5.9 4.7/3.9 5.0/4.4 3.3/2.8 39/36
PMio, SHARP - - 42/3.6 47140 5.2/3.8
-Spring 4.0/35 44/3.6 52/3.6
-Summer 49/4.4 6.0/5.5 6.5/5.1
-Autumn 3.8/3.1 4,7/3.8 47137
-Winter 41/33 3.8/33 44/33
PMyo, - 55/4.8 48/4.0 4.2/34 49/4.1
DMPS+APS 5.8/4.9 44/39 41/35 48/4.1
-Spring 6.2/5.9 59/5.0 55/4.9 59/5.3
-Summer 4.8/3.9 42/3.3 3.8/28 43/34
-Autumn 55/4.7 4.7/3.9 35/2.9 4.7/3.9
-Winter
PM2 s, impactor 5.8 4.6 /3.7 47/3.8 35/28 43/34
-Spring 6.4 5.0/4.1 42/35 34/26 4.2/33
-Summer 5.9 52/4.6 5.9/5.0 45/3.7 52/4.4
-Autumn 5.7 3.6/27 42/3.4 3.3/23 3.7/28
-Winter 5.1 44/35 45/3.8 29/24 4.0/3.2
PM2s, - 4.7/4.0 41/3.4 3.6/3.0 42/3.6
DMPS+APS 48/4.2 3.7/3.2 34/29 41/34
-Spring 5.1/4.8 49/4.2 46/4.2 49/45
-Summer 39/3.2 35/27 33/24 3.6/28
-Autumn 5.1/4.3 43/3.6 3.3/28 43/3.6
-Winter
PMy, impactor 4.3 3.8/3.0 3.8/29 27121 34/27
-Spring 4.4 4.2/3.4 3.3/27 26/20 34/27
-Summer 5.6 44137 49/4.0 35/3.0 4.2/35
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-Autumn 3.6 2.8/2.1 3.3/23 24/1.6 2.8/2.0
-Winter 3.8 3.7/2.8 3.7/3.0 23/1.7 3.3/25
PMy, - 3.8/3.3 3.3/2.6 3.0/24 34/28
DMPS+APS 3.9/33 29/25 2.8/23 3.3/26
-Spring 4.2/3.9 41/3.6 3.8/3.3 40/3.6
-Summer 3.0/23 27/1.9 26/1.8 28/2.1
-Autumn 43/34 35/28 2.7/2.0 35/28
-Winter

The PM concentrations in all sizes have an overall decreasing trend during the measurement
period, although there is a seasonal and interannual variation (Fig. 4 and S3). Additionally, the
methods give slightly inconsistent results: DMPS+APS method shows constant decline in PM
concentrations, whereas the impactor data shows slight increase in all PM sizes for 2011-2015
period for all seasons but spring (Table 2). SHARP data shows increased PM1o concentration
between 2011-2015 and 20162020 for all other seasons except for winter, but this is likely
explained by the decreased inlet heating temperature, changed between the two periods. Hence,
no conclusion of the trend in SHARP data can be drawn. Despite the slight discrepancies
between the methods, the PM mass concentrations are generally declining over the two decades

of measurements. The trends are analyzed in more detail in the following section (Sect. 3.3).

The PM concentrations in all size classes are typically highest in summer and lowest in autumn
(Table 2). In summertime, the surrounding boreal forest is a large source of organic
compounds, which contribute to the aerosol load as shown already in several studies (e.g.
Heikkinen et al., 2020, 2021; Yli-Juuti et al., 2021). Due to the temperature dependent activity
of the forest, warm spells and heatwaves increase the VOC emissions, such as in 2018 (Neefjes
et al., 2022), which is also evident in PM data in all size classes (Fig. 4). Additionally, pollen
and other biological particles add up especially coarse mode particle mass at SMEAR |l
(Manninen et al., 2014).

Although PM mass concentrations are generally decreasing, certain events associated with
higher PM levels, such as wildfires and volcanic eruptions, can be detected. In 2006 springtime
as well as in 2006 and 2010 summer forest fires in eastern Europe increased the measured PM
concentrations at SMEAR |1 (Fig. 4 and S3) (Leino et al., 2014). The growing seasons of 2006
and 2011 were exceptionally warm at SMEAR |1 based on the analysis spanning years 1996—

2017 (Pysarenko et al., 2022), but the relatively high PM concentrations in spring 2010 and
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2011 can also be caused by the plume of ash and SO> from the erupted Eyjafjallajokull and
Grimsvétn volcanoes in Iceland (Thomas et al., 2011; Gudmundsson et al., 2012; Tesche et al.,
2012; Flanner et al., 2014). The mean PM concentrations in 2014 were affected by a six-month-
long (from 31 August 2014 to 27 February 2015) eruption of the Bardarbunga volcano in
Iceland, which Heikkinen et al. (2020) also noticed in the sulfate aerosol and SO:
concentrations. During the eruptions, high concentrations of SO, and PMz1o were measured over
Europe (Cooke et al., 2011; Gislason et al., 2015; Ilyinskaya et al., 2017). The events are also
associated with relatively high SO, and NOx concentrations at SMEAR 11 (Fig. S4).

During the coldest winters 2009—2010 and 2010-2011, the measured PM concentrations were
high. These years were also associated with high concentrations of SO, and NOy (Fig. S4).
Residential heating is known to be a source of particulate emissions as wood is burned for
heating (Spindler et al., 2004; Viana et al., 2008; Barmpandimos et al., 2011). However, the
coldest winter temperatures are typically measured in Finland when air is transported from the
eastern continental areas (Sui et al., 2020). These, and particularly southeastern, areas are also
a source of atmospheric pollutants (Riuttanen et al., 2013). Hence, rather than being local, the
pollutants could also be advected to Finland. This is supported by the air mass source area
analysis; the winters with higher fraction of easterly and European air masses had also higher
PM levels (Fig. S5). Further, the measured concentrations are affected by the dynamics of the
atmospheric boundary layer. Shallow boundary layer heights are measured during cold winter
days, concentrating the anthropogenic pollutants close to the surface (Stull, 1988; Sinclair et
al., 2022).

Overall, the air quality at SMEAR Il was very good during our measurement period from 2005
to 2020 with mean values ranging from 3.4 pug m for PM1 measured by impactor to 5.2 pg m"
8 for PM1o measured by SHARP. The values are in the same range as concentrations at
European natural background sites reported in Van Dingenen et al. (2004). The lowest PM1o
concentrations at Finnish urban sites measured between 1998 and 2003 were 9 pg m while
concentrations in Helsinki reached 20 pug m* (Anttila & Salmi, 2006). To give further
perspective for the concentrations, in highly polluted areas in Beijing, China, the recorded PM1o
values from 2004 to 2012, were 138 + 93 pg m™ for PMio, 72 54 ug m for PM25 and 66
56 ug m for PMy (Liu et al., 2014).
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3.3 Long-term trends

Long-term trends are shown seasonally for each size class PM1o, PM25sand PM1 using impactor

data (Fig. 5, S6, and S7). A decreasing trend is observed in each measured size class ranging

from -0.012 to -0.064 pug m3y*. The largest decreases in all size classes are observed in spring

and winter, whereas the decrease is the lowest in autumn. The decline is statistically significant

at 95 % level in spring and winter, but not in summer and autumn. However, when calculating

the trends from DMPS+APS data using 6-hour averages, the Mann-Kendall test revealed a

statistically significant decrease in all size classes and seasons, ranging from -0.007 to -0.066

ug m3ytwith similar seasonal distribution as with the impactor data (Table S1).

PM1 (ug m™
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o !
o
o !

%
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Figure 5: PMy concentration with the impactor method in (a) spring, (b) summer, (c) autumn,

and (d) winter. Red horizontal line represents the median, the distance between the box edges

shows the interquartile range, and whiskers extend to 1.5 times the interquartile range. Outliers

are not shown. Slope represents trend calculated using seasonal Mann-Kendall test.

The seasonal differences in PM trends follow the trends observed also in SOz and NOx

concentrations (Fig. S8 and S9), indicating that the decrease in anthropogenic pollutants drive
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the decrease in PM concentrations. On the other hand, the lower summer and autumn time
decline can also be explained by the high fraction (more than 50 %) of OA from the surrounding
boreal forest in the PM mass concentration at SMEAR 11 (Heikkinen et al., 2020). Further, in
Li et al. (2023) the concentrations of organic precursors have even been shown to have an
increasing trend at SMEAR 1.

In winter, biogenic OA precursors have minima in their concentrations (Heikkinen et al., 2020),
and consequently the collected PM originates mostly from anthropogenic sources, such as
traffic, industry, and different combustion processes (Forsberg et al., 2005; Anttila & Tuovinen,
2010). Moreover, many gaseous pollutants, emitted from anthropogenic processes and
contributing to atmospheric chemistry or aerosol processes, have maxima in their seasonal
cycle in spring and winter (Lyubovtseva et al., 2005; Anttila & Tuovinen, 2010; Riuttanen et
al., 2013; Heikkinen et al., 2020), further affirming the contribution of anthropogenic pollution
to the observed trends. Additionally, Banerji et al. (2025) showed that at SMEAR |1, light
absorbing aerosol peak in winter, being thus associated with e.g. black carbon from
anthropogenic activities, while aerosol scattering peaks in summer and winter, being thus likely
associated with organic aerosol in summer and sulfates in winter. They also found an increasing
trend in single scattering albedo, indicating that the relative proportion of light absorbing

aerosol decrease.

The seasonal difference in PM sources is visible also in the ratios between PM; to PM2s and
PM2 5 to PM1o plotted against temperature bins (Fig. 6) as well as in monthly PM31 to PMyo ratio
(Fig. S10). The fraction of smaller particles increases in cold and warn temperatures, which
could be attributed to rather local anthropogenic pollution during winters and SOA formation
in summer (Fig. 6). In winters, nearly 80 % of PM1o consists actually of PMy (Fig. S10). The
PM1 to PM2s and PM2 s to PMyo ratios exhibit small, but statistically significant at 95 % level,
negative trends (Fig. S11), which could be attributed to the decline particularly in PMq

concentration due to decreasing precursor concentrations.
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Figure 6: PM; to PM2s and PM2s to PMyg ratios in different temperature bins using impactor
data. Horizontal line represents the median, the distance between the box edges shows the
interquartile range, whiskers extend to 1.5 times the interquartile range, and data points even

further from the median are presented with circles.

Generally, the PM concentrations have been observed to decrease in Europe (Spindler et al.,
2004; Barmpadimos et al., 2011; Keuken et al., 2012; Guerreiro et al., 2014). However, in
Guerreiro et al. (2014) small non-significant positive trends in PM1o and PM> s were observed
for Finnish rural background sites. In Anttila & Tuovinen (2010) both increasing and
decreasing trends were detected, which was likely caused by the different measurement
environments (urban, suburban, and industrial). Luoma et al. (2019) reported decreased light
absorption of aerosol population at SMEAR I, indicating reduction in large particle

concentration.

The connection between decreasing gaseous pollutant emissions and secondary aerosol
concentrations has already been noted previously (e.g. Kyr0 et al., 2014; Li et al., 2024) and
decreasing PM trends in Europe have been connected to modernization of industry and heating
systems as well as technology development of vehicles (Spindler et al., 2004; Barmpadimos et
al., 2011; Keuken et al., 2012). Hence, the observed decrease in PM concentrations at SMEAR

Il can be connected to the emission reductions driven by air quality legislation.
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4 Conclusions

In this paper, different long-term aerosol mass concentration (PMz1o, PM25, PM1) measurement
techniques were compared and reported for the years 2005-2020 from SMEAR 11, Finland.
The direct mass concentration measurements with a cascade impactor and SHARP were
compared with the mass concentrations calculated from the combined aerosol number size
distributions of DMPS and APS. The results obtained using different methods are well

comparable with the correlation coefficients of about 0.8.

The lower correlation values were connected to sampling methodologies: e.g., reducing the
inlet heating temperature of SHARP, increased the correlation with the impactor. Additionally,
although impactor measurements are simple and purely based on weighing of filters, the
impactor data showed somewhat higher concentrations than the other two methods, which
might stem from the difficulties related to weighing masses down to micrograms. Any
disturbances or deposited dust particles can lead to overestimated mass concentration. This
might even be the cause why impactor data showed statistically insignificant trends in summer
and autumn while DMPS+APS data with similar absolute values resulted in statistically

significant decreasing trend in PM concentration.

The measured masses were similar between all the methods, and hence we can conclude that
all methods were applicable for long-term PM monitoring. Yet, we acknowledge that the
comparison of PM concentrations measured with different techniques gives valuable
information for data quality control purposes, as well as for validating the applicability of the
different methods. Therefore, we encourage conducting extensive comparisons with different

methods at each measurement site.

The PM concentrations at SMEAR 11 were generally low, mostly less than 5 ug m=, which
clearly fell below the 20 pg m™ limit by the EU air quality legislation. The highest PM
concentrations at SMEAR |1 were measured in summer, when organic compounds from the
surrounding boreal forest contribute to the measured PM mass. Peaks observed in the PM data
can be related to transported particles from regions with e.g., forest fires or on-going volcanic

eruptions.
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The measurements showed overall decreasing PM trends for all size classes and in all seasons,
which can be attributed to the decrease in anthropogenic pollution due to legislation aiming for
improved air quality. Importantly, the trends were weakest in summer when natural emissions
of VOCs from the forest lead to the formation of OA. As these natural VOCs are projected to
increase with increasing temperature, it is possible that summertime OA concentrations keep
increasing in the future. Taken together with the declining anthropogenic emissions, the role
of natural aerosol particles cloud be anticipated to signify in the future. Overall, the results
emphasize the importance of the long-term measurements (Kulmala et al., 2023) for
understanding atmospheric aerosol mass concentrations and factors controlling them. This is a
requirement to quantify the relative roles of natural and anthropogenic sources to PM

concentrations and ultimately to their impacts on health and climate.
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